Data Prediction Model and Machine Learning

Online course #11 Model improvement

Accuracy: Percentage of right prediction

Learning more about confusion matrix

Learning more about confusion matrix

Ground Truth

		Positive (Spam)	Negative (Ham)
Prediction	Positive (Spam)	ТР	FP
	Negative (Ham)	FN	TN

- Accuracy (정확도) = (TP + TN) / All
- Error rate (오류율) = (FP + FN) / All

Beyond Accuracy: kappa statistic

Kappa statistic adjusts accuracy by controlling the likelihood of accidentally making accurate predictions

e.g.) In severely imbalanced data (like 90% positive), high accuracy can be obtained by just one-sided predictions

Beyond Accuracy: kappa statistic

Prediction

Positive

(Spam)

Negative

(Ham)

Ground Truth

Negative

(Ham)

10

150

180/210 * 160/210 = 0.65

Probability of making a prediction as ham while it is actually ham

+

Probability of making a prediction as spam while it is actually spam 30/210 * 50/210 = 0.03

(0.81 - 0.68) / (1-0.68) = 0.13 / 0.32 = 0.41

Positive

(Spam)

20

30

Beyond Accuracy: Sensitivity vs. Specificity

Finding a useful classifier requires a balance between overly conservative and overly aggressive predictions.

i.e.) Spam filter

Trade-off between

99% of Spams are filtered correctly but 5% of Ham is mis-filtered

Vs.

80% of Spams are filtered correctly but only 0.1% of Ham is mis-filtered

Beyond Accuracy: Sensitivity vs. Specificity

Ground Truth

		Positive (Spam)	Negative (Ham)
Prediction	Positive (Spam)	TP	FP
	Negative (Ham)	FN	TN

- Sensitivity: Correctly classified positive rate
- TPR (True Positive Rate) = TP / (TP + FN)
- Specificity: Correctly classified negative rate
- TNR (True Negative Rate) = TN / (TN + FP)

Beyond Accuracy: Sensitivity vs. Specificity

Trade-off between

99% of Spams are filtered correctly but 5% of Ham is mis-filtered

Vs.

80% of Spams are filtered correctly but only 0.1% of Ham is mis-filtered

Trade-off between

Sensitivity 99% and Specificity 95%

Vs.

Sensitivity 80% and Specificity 99.5%

Beyond Accuracy: Precision vs. Recall

Ground Truth

		Positive (Spam)	Negative (Ham)
Prediction	Positive (Spam)	TP	FP
	Negative (Ham)	FN	TN

- Precision: How accurate is it when predicting positives
 = TP / (TP + FP)
- Recall: How perfectly classified positive values =TP / (TP + FN)

- **Sensitivity**: Correctly classified positive rate
- TPR (True Positive Rate) = TP / (TP + FN)

- **Specificity**: Correctly classified negative rate
- TNR (True Negative Rate) = TN / (TN + FP)

Profit >0 Probability of making any profit Set the threshold = 0.1 0 Profit =0 Views

What happens when changing the threshold?

FPR (1-Specificity)

Points on the line \rightarrow Proportion of

ROC (Receiver Operating Characteristic) curve: Model comparison

For fair evaluation

Let's use different dataset for the test from the dataset used for training

Holdout method

For fair evaluation

Better method for model improvement

For fair evaluation

K-fold Cross-Validation

