Data Prediction Model and Machine Learning

Online course #8 Logistic Regression

Linear Regression? Fitting a line to data

1) Find a line minimizing the SSE

- Calculate R-squared ← significant correlation btw X and Y
- 3) Use the line to predict Y given X

Linear Regression? Fitting a line to data

Simple Linear Regression

Multiple Linear Regression

When a line cannot be fitted in the data

Logistic regression?

Regression \iff Classification

• Y = Probability [0:1]

- Y = Classification (0 or 1)
- Not allowed (classification among A,B,C)

Logistic regression: How different from LM?

Similar to linear regression **except**

- Logistic regression predicts whether something is T or F, instead of predicting numerical Y
- 2) Fits a "S" shaped "logistic function" to data instead of a line
- 3) Curve let us know the probability

Logistic regression: for two or more features

 $Profit_i = \alpha + \beta Views_i + \varepsilon_i$

 $Profit_i = \alpha + \beta Views_i + \gamma Ads_i + \varepsilon_i$

 $Profit_i = \alpha + \beta Views_i + \gamma Ads_i + (Youtuber's gender, blood type and so on ...) \varepsilon_i$

Just like linear regression,

- logistic regression can work with continuous data (Views, Ads),
- and also with discrete data (like gender and blood type)

Logistic regression: as a family of GLM

Linear Regression Model

Logistic Regression Model

How to make an "S" curve?

How to make an "S" curve?

Linear Model

$$Profit = f(View)$$

$$f(View) = \alpha + \beta View$$

Logistic Model

$$Profit = S(View)$$
$$S(View) = \frac{1}{1 + e^{-(\alpha + \beta View)}}$$

How to find a better fitting "S" curve line?

Linear Model

Logistic Model

Profit = S(View)

$$Profit = f(View)$$

 $f(View) = \alpha + \beta View$

$$S(View) = \frac{1}{1 + e^{-(\alpha + \beta View)}}$$

How to find a better fitting "S" curve line?

Let's get back to the first example

Video	Views	Profit
1	1	0
2	2	0
3	3	1
4	4	0
5	5	1
6	6	1
7	7	1

x=c(1:7)
y=c(0,0,1,0,1,1,1)
par(pty="s")
plot(x,y)

Learning model with logistic model function (glm)

Video	Views	Profit	
1	1	0	
2	2	0	
3	3	1	
4	4	0	
5	5	1	
6	6	1	
7	7	1	

Call:

glm(formula = y ~ x, family = "binomial")

Deviance	Residuals	5:			
1	2	3	4	5	
-0.2953	-0.5379	1.4447	-1.4590	0.5300	
6	7				
0.2907	0.1567				
Coefficie	ents:				

		Estimate	Std. Error	z value	Pr(> z)
(Inter	α=	-4.3614	3.3296	-1.310	0.190
Х	β=	1.2507	0.8833	1.416	0.157

(Dispersion parameter for binomial family taken to be 1)

logit.model<-glm(y~x, family="}
summary(logit.model)</pre>

Null deviance: 9.5607 on 6 degrees of freedom Residual deviance: 4.9823 on 5 degrees of freedom

The logistic regression coefficients give the change in the log odds of the outcome for a one unit increase in the predictor variable.

Model interpretation

What is Odds?

Odds provide a measure of the likelihood of a particular outcome. They are calculated as the **ratio of the number of events that produce the outcome to the number that don't.** Odds are commonly used in gambling and statistics.

$$Odds = \frac{P(Event = 1)}{P(Event = 0)}$$

 $P(Event = 1) = \frac{\# of observations in which the event occur}{\# of observations}$

Model interpretation

Learning model with logistic model function (glm)

Number of Fisher Scoring iterations: 5

Model interpretation

$$\ln\left(\frac{P(Profit=1)}{P(Profit=0)}\right) = \alpha + \beta View$$

$$\exp(1.2507)$$

$$\frac{P(Profit=1)}{P(Profit=0)} = e^{\alpha + \beta View}$$
[1] 3.492787

- For every one unit change in Views, the Odds of Profit (versus non-profit) increases by 3.5
- P(Profit) > P(non-profit) : Three point five times bigger