Data Prediction Model and Machine Learning

Online course #6 K-NN (Nearest Neighbors)

"Birds of a feather flock together"

Blind testing

Ingredients	Sweet taste	Crunchy	Туре
Apple	10	9	Fruit
Bacon	1	4	Protein
Banana	10	1	Fruit
Carrot	7	10	Vegetable
Salary	3	10	Vegetable
Cheese	1	1	Protein

- Vege: Crunchy but not sweet
- Fruit: Mostly sweet
- Protein: not so crunchy and not sweet as well

how sweet the food tastes

Is Tomato Fruit or Vegetable?

how sweet the food tastes

how crunchy the food is

K-NN

K= 4

(Nearest Neighbours)

Vegetables celery carrot Fruits lettuce apple cucumber how crunchy the food is green bean Proteins nuts grape bacon orange shrimp

fish

cheese

how sweet the food tastes

pear

banana

how sweet the food tastes

how crunchy the food is

Vegetables celery carrot **Fruits** lettuce apple cucumber green bean pear **Proteins** nuts grape bacon orange shrimp fish banana cheese

how sweet the food tastes

how crunchy the food is

How to measure the distance to the nearest neighbours? (A degree of similarity)

(feat. Pythagoras rule)

$$dist(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2}$$

Euclidian distance

(feat. Pythagoras rule)

Distance to Tomato

<u>.</u>

how crunchy the food

how sweet the food tastes

Euclidian distance

(feat. Pythagoras rule)

Ingredients	Sweat	Crunchy	Туре	Distance to Tomato
Grape	8	5	Fruit	$\sqrt{(6-8)^2 + (4-5)^2} = 2.2$
Green bean	3	7	Vegetable	$\sqrt{(6-3)^2 + (4-7)^2} = 4.2$
Nuts	3	6	Protein	$\sqrt{(6-3)^2 + (4-6)^2} = 3.6$
Orange	7	3	Fruit	$\sqrt{(6-7)^2 + (4-3)^2} = 1.4$

• 1NN

• 3NN

How to choose the number of neighbours (k)?

How to choose the number of neighbours (k) ?

How to choose the number of neighbours (k)?

Feature standardization

1. Min-max normalization

$$X_{new} = \frac{X - \min(X)}{\max(X) - \min(X)}$$

2. Z-score standardization

$$X_{new} = \frac{X - \mu}{\sigma} = \frac{X - Mean(X)}{SD(X)}$$

Pros and Cons of the k-NN classifier

Advantages

- Simple and efficient
- No assumption on distribution of the underlying data
- Fast training

Disadvantages

- No model: difficult to understand the relationship between IVs and DV
- Need to choose the right 'k'
- Slow classification
- Additional processing is required for nominal features and missing data